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Abstract

The smooth band model (also called the reordered band model) shows promise of providing the foundation for a

radiant analysis method for enclosures containing participating gases. Existing models for the smooth absorption

coefficient distribution, however, are not totally satisfactory. This paper presents a new model for the smooth ab-

sorption coefficient that addresses the problems with the current models. The new model is exercised on some

benchmark calculations of total gas emissivity to test its accuracy. Also, a demonstration problem involving a spherical

enclosure with reflective walls is solved to illustrate the utility of the smooth band model, as well as the ease of cal-

culation. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Radiant analysis for situations where there is a par-

ticipating gas like CO2 and H2O is important in boilers,

furnaces, and in the atmosphere, as well as in other en-

gineering situations. The gaseous participation is re-

stricted to certain bands in the infra-red spectrum, called

vibration–rotation bands. Characterizing the absorption

coefficient in accordance with its exact fine structure in-

side these bands has proven impractical for the design

calculations. The highly complex, rather erratic nature of

the absorption spectrum means that even if this fine

structure were available over the full temperature range

of interest – often it is not – the computational effort is

too great for realistic simulations in a design framework.

Consequently there have been a number of simpler, ap-

proximate methods advanced, such as the correlated-k

method, the weighted sum of gray gases method, and the

reordered band method. Work on the last of these, the

reordered band method, indicates that replacing the ac-

tual erratic distribution of a single vibration–rotation

band with a smooth, reordered absorption coefficient

distribution, agðgÞ, shows promise of providing the

foundation for an efficient and general-purpose method

that is accurate enough for engineering purposes [1–3].

The ‘‘smoothness’’ is obtained by reordering all the small

(infinitesimal) wave number intervals inside a single

band in such a way that the reordered distribution either

decreases or increases monotonically with wave number,

depending on which side of the band center the wave

number lies. The smooth band can then be analyzed by

marching through the complete wavelength spectrum

obtained after re-arranging. Since one can use relatively

large wavelength intervals in this marching process, the

computational effort is much reduced, and may be real-

istic for the design context. For reasons that will be made

clear, the existing models for the reordered, smooth band

function, agðgÞ, are not totally satisfactory. This paper

presents a new model for agðgÞ and exercises it on some

benchmark calculations of total gas emissivity and a

demonstration problem involving a spherical enclosure.

The smooth reordered band information can also

provide basic information for the k-distribution method,

the main distinction between these two methods being

that in the reordered band approach, the integration is

carried out over wave number directly, whereas in the k-

distribution method, there is a transformation from

wave number to absorption coefficient (sometimes called

k), and then the integration is carried out over the
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absorption coefficient rather than wave number itself.

The smooth reordered band information also has ap-

plication to the weighted sum of gray gases method.

2. Background

As was shown by Lee et al. [1], the smooth absorp-

tion coefficient distribution can be inferred from existing

knowledge of the well-studied effective bandwidth, AlðsÞ,
and its dependence on the path length, s. In particular,

they showed that the reordered band can be obtained

through finding the inverse Laplace transform f ðtÞ of

the derivative, A0
lðsÞ, of AlðsÞ and then performing an

integral: thus

gðagÞ ¼
1

2

Z 1

ag

f ðtÞ
t

dt ¼ 1

2

Z 1

ag

L�1fA0
lðsÞg
t

dt: ð1Þ

Nomenclature

AlðsÞ effective bandwidth ðcm�1Þ of band l for

path length s

A	 dimensionless effective bandwidth;

A	 ¼ AlðsÞ=x
ag Absorption coefficient ðm�1Þ
a	g dimensionless absorption coefficient;

a	g ¼ xag=ðaqaÞ
B coefficient for computing a	g in the new

absorption coefficient model; see Eqs. (4)

and (7)

bi;j coefficients for the new absorption

coefficient model; see Eq. (9) and Table 1

cj;k coefficients for the new absorption

coefficient model; see Eq. (4) and

Table 2

e a constant ðe ¼ 2:718 . . .Þ
ebgðTgÞ spectral hemispherical emissive power

ðW=m2 lmÞ of a blackbody at tempera-

ture Tg
f ðtÞ a function obtained by performing the

operation L�1fA0
lðsÞg; see Eq. (1)

j refers to a specific value of log10 b; see
Eq. (9) and Table 1

L path length (m) or (cm)

m the interval in which a given value of b lies;

see Eq. (6)

p a counting variable

PCO2
partial pressure of CO2 (atm) or (bar)

Ptotal total pressure of the gas mixture (atm)

qw net total radiant heat flux into the wall

ðW=m
2Þ

qwg net spectral radiant heat flux into the wall

ðW=m2 lmÞ; see Eq. (11)

R radius of a sphere (m)

s path length (m)

Tg gas temperature (�C) or (K)

Tw wall temperature (K)

t a dummy variable; see Eq. (1)

Greek symbols

a band strength parameter

ðm�1 cm�1=ðg=m3ÞÞ

b line overlap parameter (dimensionless);

equal to p times the ratio of line width to

average line spacing

v line overlap parameter (dimensionless) to

input to the new absorption coefficient

model; see Eq. (5)

d the Kronecker delta

eðLÞ total emissivity (dimensionless) of a gas for

path length L; see Eq. (10)

ew emissivity (dimensionless) of the wall

g wave number ðcm�1Þ
gc wave number ðcm�1Þ at the band centre

g	 dimensionless wave number;

g	 ¼ jg � gcj=ðx=2Þ
h a function of dimensionless wave number;

see Eq. (8)

qa partial density ðg=m3Þ of participating gas

component ‘a’

r Stephan–Boltzmann constant;

r ¼ 5:67� 10�8 W=ðm2 K4Þ
s dimensionless path length; s ¼ aqas=x
sg average spectral transmissivity

(dimensionless) for the spherical enclosure

with reflecting walls; see Eq. (12)

x a measure of the wide bandwidth ðcm�1Þ

Subscripts

a refers to participating gas component ‘a’

b refers to a blackbody

CO2 refers to carbon dioxide gas

c refers to the band centre

g refers to the gas

i refers to the ith coefficient in the new

smooth absorption coefficient model; see

Eq. (9) and Table 1

j refers to a specific value of log10 b; see Eq.
(9) and Table 1

k refers to the kth value of a	g; see Eqs. (4)

and (9)

l refers to the lth wide band

p a counting subscript

total refers to the entire gas mixture

w refers to the wall

g refers to wave number
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This process defined by Eq. (1) can be done ‘‘once for

all’’ and the resulting gðagÞ function can be presented in

a readily useable form [1].

There are certain parameters in the relations for AlðsÞ
and agðgÞ, namely the band properties, which are the

band center wave number gc, the line overlap parameter

b (equal to p times the ratio of line width to average line

spacing), the parameter x (a measure of the band’s

width), and the group aqa=x, where a is the band

strength parameter, and qa is the partial pressure of

the ‘‘active’’ constituent of the gas mixture, i.e., the

constituent responsible for the band’s presence in the

spectrum. The functional relation agðgÞ can be de-

dimensionalized. The dimensionless wave number is

g	 ¼ jg � gcj=ðx=2Þ and the dimensionless absorption

coefficient is a	g ¼ xag=ðaqaÞ. The relation agðgÞ is then

expressed by

a	g ¼ a	gðg	; bÞ: ð2Þ

It is noted that the procedure given by Eq. (1) actu-

ally produces the wave number g as a function of the

absorption coefficient ag rather than the other way

around. Thus, in dimensionless terms, it gives the

function

g	 ¼ g	ða	g; bÞ: ð3Þ

When required, the inverse function of that in Eq. (3),

that is the function in Eq. (2), can be found by a nu-

merical inversion technique (based on root-finding).

However, the inversion process can be computationally

demanding if the function a	g ¼ a	gðg	; bÞ needs to be

evaluated many times and, therefore, it is preferable to

have the function in Eq. (2) when one wishes to produce

a	g as a function of g	.

Two representations of g	ða	g; bÞ and/or its inverse,

a	gðg	; bÞ have been presented in the literature. Lee et al.

[1] gave a fitted formula for a	gðg	; bÞ, based on using

Morizumi’s expression for AlðsÞ [4], and Denison and

Fiveland [3] gave a method for calculating g	ða	g; bÞ,
based on the expressions for AlðsÞ given by Edwards and

Menard [5]. Lee et al. [1] had chosen Morizumi’s ex-

pression to invert because it has continuous derivatives,

whereas the Edwards and Menard relations are piece-

wise in nature. On the other hand, there is an uncer-

tainty associated with evaluating parameters a and x for

the Morizumi model; as explained by Lee et al. [1], they

are slightly path-length-dependent and deciding appro-

priate values requires some judgment. No such difficul-

ties arise in the evaluation of the parameters in the case

of the Edwards and Menard model used by Denison and

Fiveland. Thus, the Denison and Fiveland model for the

reordered band appears to be the preferred model, ex-

cept for the fact that the model presents the formula in

the form g	ða	g; bÞ rather than its inverse, a	gðg	; bÞ. While

this is not always a problem if one is using the smooth

reordered distribution as an adjunct to the k-distribution

method or the weighted sum of gray gases method, it is a

problem if one is using it for the method of direct inte-

gration over wave number. So a direct formula for

a	gðg	; bÞ, like the one provided by Lee et al. [1] but

founded on the Edwards and Menard [5] model for

AlðsÞ, is highly desired. Such an explicit formula is the

subject of the present paper.

Before describing this new model, it is useful to

provide additional motivation for its need. It will be

recalled that the reordered band is useful for the k-dis-

tribution method and the weighted sum of gray gases

method [3], as well as for the method where one inte-

grates directly over wave numbers [1]. In the last of these

methods, the direct form a	gðg	; bÞ is certainly the pre-

ferred one. In the weighted sum of gray gases method, it

is true that one can proceed with the indirect form

g	ða	g; bÞ and not need the direct form a	gðg	; bÞ, and this

was done in certain single component gas examples

worked by Denison and Fiveland [3]. On the other hand,

if there is soot present or there is more than one gaseous

component so that there is a real possibility of over-

lapping bands, it will be necessary to add the contribu-

tions to the absorption coefficients at specific wave

numbers, and this demands that one have the direct

form a	gðg	; bÞ in order that one can add these contri-

butions, if one is going to avoid the numerical inversion

process. Thus the direct form may be useful in calcula-

tions using the weighted sum of gray gases method as

well.

3. The new direct model, a	gðg	; bÞ

Following a procedure similar to that of Lee et al. [1],

a set of curves of the form a	gðg	; bÞ has been fitted to the

smooth distribution of Denison and Fiveland [3], and

interpolation between the curves is carried out using a

cubic spline. Valid for the range b P 0:003163, the final

formula for a	gðg	; bÞ is as follows:

a	g g	; bð Þ ¼
X11
k¼1

~aa	g g	; kð Þ
X1
p¼0

ð � 1Þp Bð
h

� pÞdmþp;k

þ B Bð � 1Þ Bð þ 1� 3pÞ cmþp;k

96

i
; ð4Þ

where with

v ¼ v bð Þ ¼ min b; 1ð Þ; ð5Þ

m ¼ m bð Þ ¼ 10þ int 4 log10 vð Þ ð6Þ

and

B ¼ B bð Þ ¼ int 4 log10 vð Þ � 4 log10 v; ð7Þ

and, with

h ¼ h g	ð Þ ¼ max minbln g	ð Þ; 2:5c;ð � 13:5Þ; ð8Þ
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Table 1

Coefficients, bi;j, for the fitted smooth absorption coefficient distribution of Eq. (9)

bi;j j ¼ 1

ð�2:5Þ
j ¼ 2

ð�2:25Þ
j ¼ 3

ð�2:0Þ
j ¼ 4

ð�1:75Þ
j ¼ 5

ð�1:5Þ
j ¼ 6

ð�1:25Þ
j ¼ 7

ð�1:0Þ
j ¼ 8

ð�0:75Þ
j ¼ 9

ð�0:5Þ
j ¼ 10

ð�0:25Þ
j ¼ 11

ð0:0Þ

i ¼ 0 )5.0919 )4.5484 )4.0255 )3.4832 )2.9781 )2.309 )1.8145 )1.3791 )1.1415 )1.1464 )1.1503
i ¼ 1 )2.2417 )2.2833 )2.4583 )2.9381 )2.8575 )2.351 )1.8516 )0.50116 )0.40397 )0.3352 )0.3239
i ¼ 2 )0.58104 )0.70131 )0.92055 )1.4214 )1.4243 )0.97896 )0.49942 0.066817 0.039895 0.05803 0.063837

i ¼ 3 )0.15008 )0.20101 )0.29246 )0.46655 )0.45399 )0.25242 )0.05054 )0.17001 )0.02017 )0.00229 0.000441

i ¼ 4 0 0 )0.00721 )0.02739 )0.02283 )0.00423 0 )0.02543 )0.00615 )0.00542 )0.0053
i ¼ 5 0 0 0 0 0 0 0 )0.00092 )0.00039 )0.00054 )0.00056
i ¼ 6 0.11709 0.15433 0.2336 0.43167 0.44625 0.29191 0.1021 )0.59715 )0.46281 )0.40421 )0.39649
i ¼ 7 0.002636 0.022312 0.057823 0.11905 0.12305 0.050379 )0.04822 0.20369 0.033764 )0.02117 )0.02937
i ¼ 8 )0.01961 )0.02678 )0.03625 )0.05013 )0.05566 )0.04316 )0.01079 )0.00635 0.012134 0.018849 0.019886

i ¼ 9 )8.5E) 05 )6.5E) 05 )0.00103 )0.00413 )0.00373 )0.00086 )3.6E) 05 )0.00487 )0.0006 0.000813 0.00102

i ¼ 10 0 0 0 0 0 0 0 )0.00023 )0.00013 )0.00017 )0.00018

Corresponding values of log10 b given in brackets.

Table 2

Coefficients cj;k for Eq. (4)

cj;k k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6 k ¼ 7 k ¼ 8 k ¼ 9 k ¼ 10 k ¼ 11

j ¼ 1 0 0 0 0 0 0 0 0 0 0 0

j ¼ 2 26.2590 )59.5541 42.2165 )11.3119 3.0310 )0.8122 0.2176 )0.0583 0.0155 )0.0039 0.0006

j ¼ 3 )7.0361 42.2165 )70.8660 45.2475 )12.1240 3.2486 )0.8704 0.2332 )0.0622 0.0155 )0.0026
j ¼ 4 1.8853 )11.3119 45.2475 )71.6782 45.4651 )12.1823 3.2642 )0.8743 0.2332 )0.0583 0.0097

j ¼ 5 )0.5052 3.0310 )12.1240 45.4651 )71.7364 45.4807 )12.1862 3.2642 )0.8704 0.2176 )0.0363
j ¼ 6 0.1354 )0.8122 3.2486 )12.1823 45.4807 )71.7403 45.4807 )12.1823 3.2486 )0.8122 0.1354

j ¼ 7 )0.0363 0.2176 )0.8704 3.2642 )12.1862 45.4807 )71.7364 45.4651 )12.1240 3.0310 )0.5052
j ¼ 8 0.0097 )0.0583 0.2332 )0.8743 3.2642 )12.1823 45.4651 )71.6782 45.2475 )11.3119 1.8853

j ¼ 9 )0.0026 0.0155 )0.0622 0.2332 )0.8704 3.2486 )12.1240 45.2475 )70.8660 42.2165 )7.0361
j ¼ 10 0.0006 )0.0039 0.0155 )0.0583 0.2176 )0.8122 3.0310 )11.3119 42.2165 )59.5541 26.2590

j ¼ 11 0 0 0 0 0 0 0 0 0 0 0
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~aa	gðg	; jÞ ¼ exp
X5
i¼0

bi;jh
i

 !
1

 8<
: þ

X10
i¼6

bi;jh
i�5

!�1
9=
;:

ð9Þ

The coefficients bi;j in Eq. (9) are given in Table 1 and

the coefficients cj;k of Eq. (4) are given in Table 2. The

‘‘int’’ function in Eqs. (6) and (7) returns the integral

part of the argument; thus intð2:92Þ ¼ 2, and

intð3:01Þ ¼ 3. The ‘‘min’’ function used in Eqs. (5) and

(8) indicates that the minimum of the two arguments is

to be taken: thus min 4:1; 5:2ð Þ ¼ 4:1 ¼ minð5:2; 4:1Þ .

Similarly, the ‘‘max’’ function in Eq. (8) indicates that

the maximum of the two arguments is to be taken: thus

maxð4:1; 5:2Þ ¼ 5:2 ¼ maxð5:2; 4:1Þ. The function d in

Eq. (4) is the Kronecker delta. As a test on the correct

usage of Eqs. (4)–(9), one can use the facts that

a	gð3; 0:08Þ ¼ 1:0785� 10�2,

a	gð13:5; 0:08Þ ¼ 1:5465� 10�6,

a	gð8:3� 10�7; 0:08Þ ¼ 40:4713 and

a	gð3; 1:1Þ ¼ 7:5603� 10�2.

The coefficients bi;j were obtained by using the Den-

ison and Fiveland distribution to generate points ða	g; g	Þ
for the 11 specific values of log10 b running from )2.5 to

0.0 in steps of 0.25 (this corresponds to b running from

0.003163 to 1). For example, for j ¼ 5, log10 b ¼ �1:5 as

indicated in Table 1. For these specific values of b,
~aa	gðg	; jÞ and a	gðg	; bÞ are identical functions of b and g	 .

For each value of log10 b, Eq. (9) was fitted to the points

over a prescribed range in g	, using a curve fitting

computer software package, and the coefficients bi;j re-
sulted from that fitting procedure. The ‘‘min’’ and

‘‘max’’ functions in Eq. (8) were used to ensure that the

function in Eq. (9) does not go out of its fitted range.

Once the function has been determined at these specific

values of b, an interpolation can be used to find the

function at intermediate values. Eq. (4) interpolates be-

tween the various b values, and the coefficients cj;k were
determined by the 11-point cubic spline interpolation

formula that was used, as were Eqs. (6) and (7).

Fig. 1 plots the smooth distribution of the present

work, and the smooth distribution of Lee et al. [1] as

well. (Note: the definition of g	 in the case of the Lee et

al. distribution 1 is g	 ¼ jg � gcj=x for a symmetric

band, whereas g	 ¼ jg � gcj=ðx=2Þ in this paper.) The

axes in Fig. 1 were constructed so that the distributions

could be easily compared. As illustrated in Fig. 1(c), the

smooth distribution of Lee et al. [1] predicts smaller

(a) (b)

(c)

Fig. 1. The smooth absorption coefficient distribution according to: (a) the present work, (b) the work of Lee et al. [1] and (c) the

present work (solid lines) and Lee et al. [1] (dashed lines).

1 The definition of g	 given in Lee et al. [1] was found to be in

error.
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absorption coefficients than the smooth distribution of

the present work. This is consistent with the finding of

Lee [6], who showed that the Morizumi expression [4]

predicts smaller effective bandwidths than the Edwards

and Menard expression [5], especially for large b. It

should be noted, however, that since the bandwidth

parameters, a and x, are obtained differently according

to the two methods, the comparison is more complicated

than just comparing the two functions for a	g.
Values of A	ðsÞ ¼ AlðsÞ=x were calculated over the

range 0:016 b6 1:0 and 0:0016 s6 1000 (where

s ¼ aqas=x) using both the present smooth distribution

and that of Denison and Fiveland [3]. Agreement with

the A	 results from Denison and Fiveland was found to

be within 3%, which is closer than the agreement be-

tween Denison and Fiveland [3] and the piece-wise

function of Edwards and Menard [5]. Table 3 provides a

comparison of the values of A	ðsÞ.
Carrying out calculations of total gas emissivity over

a range of temperatures (500–2500 K) and a range of

partial pressure path lengths (0.00305–0.914 atm m), for

both H2O and CO2 gases verified the improvement in

computational efficiency. It was found that, when per-

forming the direct integration over wave number as il-

lustrated in Eq. (10), use of the smooth distribution of

the present work, a	g ¼ a	gðg	; bÞ, produced an approxi-

mately 100-fold reduction in calculation time as com-

pared to numerically inverting the Denison and Fiveland

function, g	 ¼ g	ða	g; bÞ, using the method of bisection.

4. Benchmark calculation of total gas emissivities

Benchmark comparisons for single, isothermal, ho-

mogeneous gases were carried out to check the accuracy

of the new smooth absorption coefficient distribution,

where the quantity used for comparison was the total

gas emissivity. Total emissivity, eðLÞ, of a gas, for path

length L and temperature Tg, is defined as:

e Lð Þ � 1

rT 4
g

Z 1

0

1



� e�agL
�
ebg Tg

 �

dg; ð10Þ

where, now, we take into account all the relevant vi-

bration–rotation bands. The quantity ebgðTgÞ is the

blackbody spectral emissive power of the gas at tem-

perature Tg. Assuming a certain set of conditions, total

emissivities of water vapour and of carbon dioxide, in a

non-participating gas such as nitrogen, were generated

by numerically integrating the smooth absorption coef-

ficient distribution of the present work. The band pa-

rameters for CO2 and H2O were in accordance with

those recommended by Edwards [7] and Modak [8].

The textbook by Modest [9] recommends the corre-

lations of Leckner [10] for total gas emissivity. Leckner’s

charts are based on the integration of spectral data and

show good agreement with other recent work. Fig. 2

compares total gas emissivities given by Leckner’s cor-

relations [10] with total gas emissivities generated from

the smooth distribution of the present work. The con-

centration of the active gas is 0.305% by volume, the

total pressure is 1.0 atm, and the path length is denoted

by L. Although the band modeling work of Edwards

and Menard [5], from which the smooth distribution was

obtained, was independent of Leckner’s correlations, the

two methods produce total gas emissivities that agree

reasonably well. Discrepancies tend to occur at higher

temperatures where experimental data are more difficult

to obtain.

5. Demonstration problem

The smooth absorption coefficient distribution can be

applied to a wide variety of participating gas problems.

For example, consider a spherical enclosure with gray

and isothermal walls containing an isothermal and ho-

mogeneous gas. The gas is composed of a mixture of

carbon dioxide and a non-participating carrier gas such

as nitrogen. The following are the problem parameters:

Wall temperature: Tw ¼ 1000 K.

Gas temperature: Tg ¼ 2000 K.

Total pressure of the gas: Ptotal ¼ 1:0 atm.

Partial pressure of CO2 : PCO2
¼ 0:15 atm.

Table 3

Values of A	ðsÞ from the present work (RH), Denison and Fiveland [3] (DF), and Edwards and Menard [5] (EM)

Author b n s 0.001 0.01 0.1 1.0 10.0 100.0 1000.0

RH 0.01 9.99E) 04 9.03E) 03 5.33E) 02 1.89E) 01 6.39E) 01 1.96E+00 4.01E+00

0.1 1.01E) 03 9.97E) 03 9.02E) 02 5.53E) 01 1.84E+00 3.85E+00 6.23E+00

1.0 1.01E) 03 1.00E) 02 9.83E) 02 8.19E) 01 3.33E+00 6.12E+00 8.48E+00

DF 0.01 1.00E) 03 1.00E) 02 5.32E) 02 1.90E) 01 6.22E) 01 1.99E+00 4.29E+00

0.1 1.00E) 03 1.00E) 02 1.00E) 01 5.32E) 01 1.90E+00 4.20E+00 6.51E+00

1.0 1.00E) 03 1.00E) 02 1.00E) 01 1.00E+00 3.30E+00 5.61E+00 7.91E+00

EM 0.01 9.98E) 04 9.01E) 03 5.31E) 02 1.91E) 01 6.32E) 01 1.96E+00 4.06E+00

0.1 1.01E) 03 9.97E) 03 8.96E) 02 5.38E) 01 1.87E+00 3.97E+00 6.24E+00

1.0 1.01E) 03 1.01E) 02 9.88E) 02 8.24E) 01 3.34E+00 6.05E+00 8.41E+00
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The radius of the sphere, R, and the wall emissivity,

ew, will vary. For the spherical enclosure with gray and

isothermal walls containing an isothermal and homo-

geneous gas, there is an analytical solution for the net

spectral radiant heat flux, qwg, into the wall:

qwg ¼ ebg Twð Þ
�

� ebg Tg

 �� ew 1� sg


 �
1� 1� ewð Þsg

� �
; ð11Þ

where

sg ¼
1� 1þ 2agR


 �
e�2agR

2 agR

 �2 : ð12Þ

Integrating Eq. (11) over the thermal radiation spectrum

provides qw, the net total radiant heat flux into the wall.

This integration can be carried out using the smooth

absorption coefficient distribution.

The integration was performed numerically by di-

viding the thermal radiation spectrum (1–8000 cm�1)

into intervals within which the smooth absorption co-

efficient was assumed to be constant at its midpoint

value. For the results plotted in Fig. 3(a), the radius, R,

of the sphere is held constant at 5.0 m while the wall

emissivity, ew, varies from 0.0 to 1.0. For Fig. 3(b), the

wall emissivity is held constant at 0.8 while the radius

varies from 0.01 to 100.0 m. Note that in Fig. 3(b), the

net total radiant flux does not reach a horizontal as-

ymptote when the radius becomes very large, as would

be the case for a gray medium problem. This is to be

expected for problems involving participating gases

because the wings of the absorption bands become

more important as the characteristic path length in-

creases.

It should be noted that this solution of the spherical

enclosure problem has been accomplished without

making the mean beam length approximation, without

making the band energy approximation [11], and with-

out having to assume the black body radiation is con-

stant over each band. It should also be noted that, once

the band parameters ða; b;xÞ had been calculated, the

net total heat flux could be found using the integral

function in the computer math software MATHCADe.

Calculation of the net total heat flux qw required, on

average, 5 s using MATHCADe on a personal com-

puter.

6. Conclusions

A new smooth distribution of the form a	g ¼ a	gðg	; bÞ
has been fitted to the smooth distribution of Denison

and Fiveland [3], which had been given in the form

g	 ¼ g	ða	g; bÞ. The Denison and Fiveland [3] distribu-

tion had been derived from the Edwards and Menard

(a) (b)

Fig. 2. Comparison of total gas emissivity predictions with those of Leckner for: (a) H2O and (b) CO2 in a non-participating gas. Solid

lines: From the correlation of Leckner [10]. Symbols: From the smooth distribution of the present work.

Fig. 3. The net total radiant heat flux into the wall versus: (a) wall emissivity (radius is 5.0 m); (b) radius (wall emissivity is 0.8).
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[5] piecewise expression for effective bandwidth and,

therefore, the correction on wide band parameters

suggested by Lee et al. [1] is not required. For calcu-

lations in which one wishes to produce a	g as a function

of g	, the new smooth distribution allows an approxi-

mately 100-fold reduction in calculation time as com-

pared to numerically inverting the Denison and

Fiveland [3] distribution using the method of bisection.

Such calculations are needed for direct integration over

wave number. Moreover, if there is soot present or

there is more than one active gaseous component so

that there is a real possibility of overlapping bands, it

will be necessary to add the contributions to the ab-

sorption coefficients at specific wave numbers, and this

demands that one have the direct form a	gðg	; bÞ if one is
going to avoid the numerical inversion process. The

new curve fit did not result in a significant loss of ac-

curacy from the Denison and Fiveland [3] distribution

and it produced total gas emissivities in good agreement

with the correlations of Leckner [10]. A demonstration

problem involving a spherical enclosure with reflective

walls illustrated the utility of the smooth absorption

coefficient distribution, as well as the ease of calcula-

tion.
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